(Juli 2021) Bei Operationen treten immer wieder Komplikationen auf, sogar mit Todesfolge. Ein neues Projekt namens „KIPeriOP“ will das Risiko solcher Komplikationen minimieren. Basis sind digitalisierte Entscheidungsleitlinien und selbstlernende Algorithmen, die anhand individueller Patientendaten eine verlässliche Risikoabschätzung liefern sollen: Mit welcher Wahrscheinlichkeit können bestimmte Komplikationen auftreten, wie ließen sie sich womöglich vermeiden?
Koordiniert wird das Projekt durch Prof. Dr. Anja Hennemuth vom Fraunhofer-Institut für Digitale Medizin MEVIS sowie Prof. Dr. Patrick Meybohm vom Universitätsklinikum Würzburg. Beteiligt sind Ärzte der Asklepios Medical School GmbH, des Universitätsklinikum Frankfurt, sowie der Charité-Universitätsmedizin Berlin. Sie arbeiten mit Spezialisten aus den Bereichen KI, Benutzerführung, Ethik, und Gesundheitsökonomie zusammen.
Jedes Jahr wird in Deutschland mehr als 16 Millionen Mal operiert. Dabei kommt es immer wieder zu Komplikationen, die nicht selten zum Tod führen: In den westlichen Industrienationen versterben 0,4 bis 0,8 Prozent der Operierten bei oder nach einem Eingriff. Die Kliniken versuchen diese Zahl unter anderem dadurch zu senken, indem sie mögliche Risikofaktoren berücksichtigen: Welche Begleiterkrankungen hat ein Patient, welche Medikamente werden aktuell eingenommen? Welche Komplikationen könnten dadurch auftreten, und wie lassen sich diese minimieren?
Zwar gibt es Leitlinienpapiere, die das medizinische Personal bei dieser Risikoabschätzung unterstützen, sie führen unter anderem Art und Anzahl von sinnvollen Voruntersuchungen auf. Doch in der Praxis sind diese Leitlinien nicht leicht anwendbar. Es sind vielschichtige Dokumente, und ihre Anwendung erfordert die Berücksichtigung einer Fülle von Informationen, deren Beschaffung nicht immer einfach ist.
Algorithmen schätzen Risiken ein
Hier setzt das Forschungsprojekt „KIPeriOP“ an, durchgeführt von einem interdisziplinären Konsortium. Ziel ist die Entwicklung eines klinischen Entscheidungsunterstützungssystems, im Fachjargon CDS-System genannt. Die vom Börm-Bruckmeier Verlag entwickelte Software soll zunächst patientenindividuell und leitlinienkonform mögliche Risikofaktoren sammeln, miteinander in Bezug setzen und als Ergebnis eine Risikoeinschätzung liefern.
Als Eingangsdaten sollen in das CDS-System möglichst viele Informationen über den jeweiligen Patienten einfließen, darunter Laborwerte, Medikationsplan, Vitaldaten sowie Auskünfte über die Lebensgewohnheiten. Zusätzlich zur Berücksichtigung der Leitlinie wird in KIPeriOP auch eine Künstliche Intelligenz (KI) die digital erfassten Daten analysieren: Lernfähige Algorithmen suchen nach Mustern und Korrelationen, die verraten, welche Konstellationen von Risikofaktoren wahrscheinlich zu welchen Komplikationen führen. So könnte mit Hilfe der KI besser erkannt werden, dass ein Patient an einer unerkannten Herzschwäche leidet und damit ein erhöhtes OP- Risiko aufweist.
Im Projekt werden verschiedene KI-Verfahren getestet, um ein optimales Modell zu finden. Damit sie verlässlich funktionieren, müssen die Algorithmen zunächst trainiert, d.h. mit vielen Datensätzen über tatsächliche Voruntersuchungen und OP-Verläufe gefüttert werden.
Vertrauen durch transparente Bedienung
Eine der Herausforderungen bei der Entwicklung des CDS-Systems ist seine Bedienbarkeit. „Wir müssen die KI-basierte Lösung so gestalten, dass sie die Arbeit der Mediziner bereichert und nicht als Belastung empfunden wird“, betont Hennemuth, die auch eine Professur an der Charité – Universitätsmedizin Berlin innehat. „Das notwendige Vertrauen in die neue Technik kann nur entstehen, wenn wir transparent machen, wie und mit welcher Sicherheit die Algorithmen zu ihren Ergebnissen kommen.“
Demnach soll die KI nicht als Blackbox fungieren, sondern auch Unsicherheiten und mögliche Fehlerquellen transparent machen. Die Entwicklung erfolgt in enger Abstimmung mit den klinischen Partnern, aber auch einem Ethik-Team der RWTH Aachen.
Langfristig könnte das CDS-System sogar noch einen weiteren Nutzen bringen: Womöglich ist es in der Lage, in den Daten bis dato unbekannte Zusammenhänge zwischen Eingangsinformationen und Komplikationshäufigkeiten zu erkennen. Damit ließen sich neue Risikofaktoren entdecken, die man vorher noch nicht kannte. Diese Erkenntnisse könnten in künftige Leitlinien einfließen und Operationen für Patienten noch sicherer machen. Welche wirtschaftlichen Auswirkungen und Möglichkeiten sich für das Gesundheitssystem ergeben, wird im Projekt ebenfalls untersucht. Hierzu werden Modellrechnungen an der TU München durchgeführt.
Quelle Text: Fraunhofer-Institut für Digitale Medizin MEVIS
Quelle Bild: Universitätsklinikum Würzburg