- Anzeige -
StartE-HealthKI effektiv in der Transplantationsmedizin – Neue Vorhersagemodelle

KI effektiv in der Transplantationsmedizin – Neue Vorhersagemodelle

(März 2019) Wenn eine Strahlen- oder chemotherapeutische Behandlung von Leukämien oder Lymphomen keinen ausreichenden Erfolg bringt, ist Transplantation von Knochenmark- oder Blutstammzellen oft die einzige Chance auf Heilung. Ein Großteil der Patienten stirbt bisher leider trotz Transplantation.

Neuartige Vorhersagemodelle für den individuellen Krankheitsverlauf, wie sie im Forschungsprojekt »XplOit« entwickelt werden, prognostizieren Auftreten und Ausmaß bestimmter Risiken und ermöglichen Transplantationsmedizinern so eine frühzeitige, lebenserhaltende Intervention bei gefürchteten Komplikationen.

Innovative IT-Plattform zur Datenintegration, Modellentwicklung und Validierung

Die neue Datenintegrations-, Modellentwicklungs- und Validierungsplattform »XplOit«, die ein Projektverbund unter der Federführung des Fraunhofer-Instituts für Biomedizinische Technik IBMT bereitstellt, erleichtert die Entwicklung und Überprüfung dieser Vorhersagemodelle. Die Plattform bereitet Datenbestände so auf, dass sie für die systemmedizinische Forschung nutzbar werden. Durch wirksame prädiktive Modelle für Komplikationen nach Stammzelltransplantation schafft das Verbundprojekt »XplOit« die Grundlagen für den künftigen Einsatz von Künstlicher Intelligenz (KI) in der Transplantationsmedizin. Das »XplOit«-Konsortium präsentiert seine bisherigen Projektergebnisse am 25. März auf dem 45th Annual Meeting of the European Society for Blood and Marrow Transplantation in Frankfurt.

Neue und wirksame Vorhersagemodelle

Die »XplOit«-Plattform wurde in den letzten 3 Jahren für die Entwicklung und Validierung von Vorhersagemodellen zur Verbesserung der Behandlung nach Stammzelltransplantation zugeschnitten. Die Transplantation blutbildender Stammzellen von Spendern wird beispielsweise zur Therapie verschiedener Formen der Leukämie eingesetzt. Krankheitsrückfälle sind gefürchtet. Erste präzise Vorhersagemodelle, die individuell für jeden Patienten mögliche Komplikationen voraussagen, werden 2019 in der »XplOit«-Plattform verfügbar sein. Damit können lebensbedrohliche Komplikationen schneller erkannt und frühzeitiger als heute behandelt werden, wie zum Beispiel die gefürchtete Transplantat-gegen-Wirt-Reaktion. Projektkoordinator Stephan Kiefer erklärt: »Die umfangreiche Analyse von Patientendaten schafft erstmals die Option für die Vorhersage des individuellen Krankheitsverlaufs. Mit den Prototypen der Vorhersagemodelle gehen wir im März in die klinische Validierung und verfeinern unsere Ergebnisse«.

Partnerschaftliche Forschung für XplOit

Das Verbundvorhaben »XplOit« wird von einem international erfahrenen, multidisziplinären Team von Experten aus den Bereichen Medizin, Systembiologie, Computerlinguistik sowie Medizin- und Bioinformatik umgesetzt. Es wird vom Fraunhofer-Institut für Biomedizinische Technik IBMT koordiniert, das die Federführung  innehat und Kernkomponenten zur Informationsextraktion, -integration und -analyse beiträgt. Das Institut für Formale Ontologien und Medizinische Informationswissenschaft der Universität des Saarlandes ist hauptverantwortlich für das sogenannte Semantische Integrationsframework der Plattform. Die Firma Averbis trägt Werkzeuge zur Informationsextraktion aus klinischen Textdokumenten bei. Informatiker der Klinik für Pädiatrische Onkologie und Hämatologie der Universität des Saarlandes sind zuständig für Datenschutz und entwickeln Pseudonymisierungstools und die Modellierungswerkbank des Systems.

Die Modellentwicklung selbst erfolgt durch die Abteilung Methoden der Medizininformatik der Eberhard-Karls-Universität Tübingen und die Klinische Pharmazie der Universität des Saarlandes. Klinische Expertise und Daten werden durch die Klinik für Knochenmarktransplantation und das Institut für Virologie des Universitätsklinikums Essen sowie durch die Klinik für Innere Medizin I – Onkologie, Hämatologie, Klinische Immunologie, Rheumatologie und das Institut für Virologie der Universität des Saarlandes bereitgestellt. Die klinischen Partner werden ab März 2019 unter Koordination durch das Institut für Virologie der Universität des Saarlandes die mit Hilfe der »XplOit«-Plattform entwickelten prädiktiven Modelle für die Stammzelltransplantation validieren.

XplOit wird im Rahmen der Initiative i:DSem – Integrative Datensemantik in der Systemmedizin vom Bundesministerium für Bildung und Forschung gefördert.

Laufzeit: 01.03.2016 – 28.02.2021, Projektwebseite: http://www.xploit-idsem.de/

Quelle Text: Fraunhofer IBMT

Quelle Bild: Adobe Stock

 

Mehr