- Anzeige -
StartForschungFraunhofer startet Projekt für medizinische Anwendungen via Magnetfeld

Fraunhofer startet Projekt für medizinische Anwendungen via Magnetfeld

(Oktober 2018) Im Juli 2018 startete am Fraunhofer-Institut für Angewandte Festkörperphysik IAF ein Forschungsprojekt mit einem neuartigen Ansatz zur Messung von Magnetfeldern im Gewebe: Die Freiburger Wissenschaftler möchten mit der Herstellung und Optimierung von NV-Zentren in Diamant den Weg für hochsensitive Magnetfelddetektoren im Raumtemperaturbetrieb ebnen und damit das weltweit erste Laserschwellen-Magnetometer entwickeln.

Mit dieser Technik sollen kleinste Magnetfelder, wie sie in neuronalen Netzen oder durch Gehirnströme entstehen, gemessen werden und so der medizinischen Diagnostik neue Türen öffnen. Das Forschungsprojekt mit dem Titel »NV-dotierter CVD-Diamant für ultra-sensitive Laserschwellen-Magnetometrie«, kurz »DiLaMag«, wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Die Messung von Magnetfeldern gehört inzwischen zum Standard in der medizinischen Diagnostik. In unseren Nervenzellen des Gehirns oder Herzens fließen kleinste elektrische Ströme, die schwache Magnetfelder erzeugen. Präzise Magnetfeldsensoren können so die Aktivitäten von Gehirn (MEG) oder Herz (MKG) messen und ermöglichen bildgebende Verfahren wie die Magnetresonanztomographie (MRT), um Krankheiten zu detektieren. Die notwendige Präzision der Messungen erreichen jedoch nur wenige hochsensitive Magnetfeldsensoren, üblicherweise bei extremer Tieftemperaturkühlung.

Höchst präzise Magnetfeldmessung bei Raumtemperatur

»Die meisten Magnetometer haben keine ausreichende Präzision, um die schwachen Signale des Gehirns zu messen. Die üblichen hochsensitiven Magnetfeldsensoren, wie etwa die SQUID-Sensoren, funktionieren nur bei extremer Kühlung, was ihren Betrieb sehr kostenintensiv und technologisch aufwändig macht. Neue Sensortechnologien wie Stickstoff-Vakanz-Zentren (NV-Zentren) oder Dampfzellen-Magnetometer können hier eine wichtige Alternative sein«, erklärt Dr. Jan Jeske, Projektleiter von »DiLaMag«.

Durch die Erforschung neuer quantenphysikalischer Systeme und Materialverbesserungen ergeben sich innovative Möglichkeiten für hochempfindliche Sensortechnologien. Im Forschungsprojekt »DiLaMag« soll mithilfe von atomaren Stickstoff-Vakanz-Zentren in Diamant eine ultra-sensitive Laserschwellen-Magnetometrie realisiert werden. Hierfür arbeiten die Forscher am Fraunhofer IAF an der Entwicklung der weltweit ersten hoch NV-dotierten Diamant-Laserkristalle. Mit hochsensitiven Magnetfeldsensoren, die für eine biologische Anwendung geeignet sind, wäre es beispielsweise möglich, Hirn- und Herzaktivitäten von Ungeborenen zu bestimmen und damit Krankheiten frühzeitig zu behandeln. Das BMBF fördert das auf fünf Jahre angelegte Projekt im Rahmen des Nachwuchswettbewerbs »NanoMatFutur« – einer Maßnahme zur Förderung hochqualifizierten wissenschaftlichen Nachwuchses im Bereich der Materialforschung.

Diamant als Lasermedium

Die Laserschwellen-Magnetometrie (LSM) ist ein weltweit neuer Forschungsansatz. Das Neue daran: Für die Entwicklung von hochpräzisen Laserschwellen-Magnetfeldsensoren soll NV-dotierter Diamant als Lasermedium eingesetzt werden. Jeske hat das Konzept während seiner Postdoktorandenstelle an der RMIT University in Melbourne mitentwickelt. »Die grundlegende Idee der LSM basiert darauf, ein Material als Lasermedium einzusetzen, das über eine optisch detektierbare magnetische Resonanz verfügt. Aufgrund seiner Materialeigenschaften ist Diamant mit einer hohen Dichte an NV-Zentren für den Einsatz als Lasermedium besonders geeignet«, erläutert Jeske.

Projektziele und Kooperationen

Das Ziel der ersten Projektphase besteht darin, die Materialeigenschaften von hoch NV-dotiertem Diamant besser zu analysieren und zu verbessern, um optimierte Laserkristalle erzeugen und erste Demonstratoren der LSM entwickeln zu können. Die zweite Projektphase fokussiert sich auf die weitere Verbesserung der Sensitivität und die Messung von Magnetfeldsignalen aus biologischen Quellen. Diese Arbeiten sollen durch eine Industriekooperation mit der Sigma Medizin-Technik GmbH, die die technische Ausstattung für erste biologische Vergleichsmessungen zur Verfügung stellt, vorangebracht werden. Unterstützung erhält das Projekt auch von medizinischer Seite: Biomagnetismus-Experten von den Universitätskliniken Freiburg und Heidelberg werden die ersten Messungen begleiten.

Quelle Text und Bild: Fraunhofer IAF

Mehr